FLOW CHARACTERISTICS OF DILUTE SUSPENSIONS
WITH RIGID ELLIPSOIDAL PARTICLES IN AN
EXTERNAL FORCE FIELD

P. B. Begoulev and Yu. I. Shmakov UDC 532.135:541.182.6

The effect of an electric field on the rheological behavior of dilute suspensions with rigid el-
lipsoidal dielectric particles is analyzed.

On the basis of the structural-continuum approach, the authors in [1, 2] have derived the rheological
equations of state for dilute suspensions with rigid ellipsoidal (ellipsoid of revolution) particles, consider-
ing not only their rotational Brownian movement but also the effect of external force fields on their kine-
matic orientation. A basic difficulty in using these equations for practical calculations is the necessity of
finding the distribution function of orientation angles of the rotation axes. In several other studies [3-7]
this distribution function was determined with the aid of asymptotic expansions in powers of the presumably
small parameters K/Dy and (xl—xQ)E"‘/Drfr, these results being of little interest, however, inasmuch as
the said parameters may not be small where the rheological behavior under real flow conditions of a sus-
pension with nearly Newtonian characteristics is concerned.

In this study we will use Peterlin's method [8], which yields the distribution function also for cases
other than those considered in [3-7]. We will use already known calculations for the effective viscosity
and the normal stress differences as functions of the shearing rate and of the field intensity.

Let us consider a simple shear flow;
v,=0,=0, v, = Kx, K = const
of a suspension with rigid dielectric ellipsoids in an electric field with the intensity
E. = Ecosa, E,=Esina, E =0, E = const.

The distribution function F, in spherical coordinates, satisfies the following equation [8]:
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The equation or orientation [1, 2] yields for our case the following components of angular velocity
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As in the case E = 0 [8], we will also seek here the solution to Eq. (1) in the form of an asymptotic
expansion in powers of the parameter R whose absolute value is not larger than unity:
i
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Inserting (2) and (3) into (1), we obtain the following recurrence relations for the coefficients of ex~
pansion (3) when 8F /8t = 0:
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Fig. 1. Curves of v, f;, and f,

vsofor: 1)a =0; 2)a = 1/4; 0 2 Y d *
3)a = 1/2. Fig. 2. Curves of v vs .

S

—n(@n+1)a,,;=0ccos2aA(n, 0, j—1; b))+ P+ osin2x)A(n, 0, j—I; a) + B C(n, 0, j—1; a),

4
bno,j = Ov
—2n(2n+1) @,y ;— omb,, ; = ccos2a[A(n, m, j—1; b)
+B(n, m, j—1; b)] + (B + osin 20) [A(n, m, | —1; a)
—B(n, m, j—1; a)] —l--g-C(n, m, j—1; a),
MG ; — 20 (20 1) by, = — 08 20 [Afn, m, j—1; )
+B(n, m, j—1; &) + (B -+ o sin 20) [A(n, m, j—1; b) —B(n, m, j—1; b)] +_§_cm, m, j—1; b),
where
1 ®
= = ——3 A, m, j;, x
Qo0 on p R ( is %)

b [__ (2n +1) (2n —2m —3) (2n —2m —2) (2n— 2m —1) (2n— 2m)
4 | (4n—3) (4n—1)
' 3(2n —2m—1) 2n— 2m) (2n + 2m +1) @n +-2m +2)
(4n—1) (4n 4-3)
+ 2n (2n -+ 2m 1) (2n -+ 2m +2) (2n + 2m +-3) 2n -+ 2m + 4) X

X xu—lm+1,]+ nm+l,j

n+1m+l,]] ’

- (4n +3) (4n +-5)
A 2+ 1
B(n, m, j; x) 1 [ T YR X 1mo,i
— 3 ¥ _ 2 v ] )
(4n __1) (4t’l + 3) am-1,j (4!1, + 3) (4n + 5) n+im-1,j { »

(2n +1) (2n — 2m —1) (2n — 2m)

€l mbia= (4n —3) (4n —1) ne1m,j
4P 4 on—12m 2@ 2m41)(2nd4-2m2)
(4n—1)(4n+3) " (4n +3) (4n - 5) ey

On the basis of the rheological equations of state for the given medium [1, 2] and with the aid of a
computer, formulas (4) yield the effective viscosity u = uy(1 + ®») and the normal stress differences T
—Toz = ue®Kiy and Txx—Tyy = u®Kf,. The results of calculations for v, f;, and f, as functions of ¢ and
are shown in Fig. 1, with 8 = 0.8 and a/b = 10, The dashed line represents the case g = 0. The curves in
Fig. 2 represent v as a function of (X:-Xz)Ez/Drfr fora/b =10, 0=0, anda =0 (curve 1) or a = 7/2
(curve 2).
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it In the case of "floating" particles (when the equation of orientation

’ has a stationary solution), the relation found in [10] for v as a function of
(\\ the "floating" angle ¢ (when particles float in the plane of shear) and the
60 y o rheological equations of state derived for the case in {1, 2] can be used for
/ \Kf’ calculating the relations for f; and f,, as shown in Fig. 3 for a/b = 10.
20
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Thus, the superposition of an electric field on a shear flow of a di-
lute suspension with rigid dielectric ellipsoids will change the kinematic
orientation of the suspended particles and this may, depending on the di-

“ ﬂ.) rection of the field, result in an increase or a decrease of the effective
viscosity.
o o The viscosity of the suspension decreases as the electric field
% parallel to the flow (¢ = 7/2) increases (the field aids the orientation
0 of suspended particles along the stream lines); when the field is paral-
30 80 1 lel to the viscosity gradient (@ = 0), then the effective viscosity in-
Fig. 3. Curvesof v, f;, and creases fast.

f, vs angle ¢ (degrees).

In all cases the viscosity of a suspension decreases with higher
shearing rates.

Dilute suspensions with rigid (and dielectric) ellipsoids in an electric field exhibit non-Newtonian be-
havior even when the rotational Brownian movement of particles is negligible.

NOTATION

is the shearing rate;
is the rotational diffusivity;
is the coefficient of rotational friction;

o = K/Dp;

% = (Xy—X9)E?/Dyfy;
K

Dy

fy

X1 and x,

Ey, Ey, and E,

are the principal values of the dielectric susceptibility along the axis of rotation of an
ellipsoid and along the normal to its direction of the field, respectively;
are the components of the electric field intensity, in Cartesian coordinates OXYZ;
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Vx» Vy, and v,
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are the components of velocity;

is the distribution function;

i52 the angular velocity of an ellipsoid;

b*);

is the length of the axis of rotation of an ellipsoidal particle;

is the equatorial diameter of an ellipsoidal particle;

is the angle between the OX axis and the projection of the axis of rotation on the OXY
plane;

is the angle between the OZ axis and the axis of rotation;

is the anglé between the OX axis and E;

are Legendre polynomials of the first kind;

are associated Legendre polynomials;

is the dynamic viscosity of the solvent;

is the viscosity of the suspension;

is the volume concentration of suspended particles;
is the stress tensor;

are functions of o, 8, o, a/b.
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